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Abstract 
 

Each year a large number of people all over the world die from HIV/AIDS. 
Although there are many complicating factors behind the spread of HIV, we 
still believe that relevant mathematical models can provide a good insight of 
the dynamics of the spread of it. If we can provide a satisfactory profile of this 
dynamics, it will certainly help government officials to make timely remedial 
actions. In the present work, we have proposed a mathematical model of the 
spread of HIV. We have made a search for equilibrium points for the system 
and discussed about their stabilities. On the basis of extensive analysis, 
relevant comments are made on mutual co-existence of the group infected by 
HIV and the group not infected by that. An effort is also made to evaluate the 
parameters involved in our model in the context of India. This practical study 
reveals a forecasting profile of the proportion and mass of HIV/AIDS infected 
people in India in coming years.  
 
Keywords: HIV/AIDS, equilibrium points, stability, mutual co-existence, 
HIV/AIDS population in India. 
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Introduction 
The Human Immunodeficiency Virus or HIV belongs to the family of Retroviruses, 
whose genetic material is RNA. In 1984, researchers discovered the primary causative 
viral agent, the human immunodeficiency virus type 1 (HIV-1). In 1986, a second 
type of HIV, called HIV-2 was discovered in West Africa, where it may have been 
present decades earlier. Both HIV-1 and HIV-2 have the same modes of transmission 
and are associated with similar opportunistic infections. In persons infected with HIV-
2, immunodeficiency seems to develop more slowly. Compared with persons infected 
with HIV-1, those with HIV-2 are less infectious early in the course of infection [1]. 
 HIV is transmitted by direct inoculation during intimate and unsafe sexual contact, 
especially associated with the mucosal trauma of receptive rectal intercourse, 
transfusion of contaminated blood or blood products and sharing of contaminated 
needles or transplacental or postpartum transmission from an infected mother to the 
fetus (by cervical or blood contact at delivery and in breast milk). HIV is not 
transmitted by casual household or social contact [2]. 
 Human CD4 + T, lymphocytes, macrophages, microbial, dendritic and langerhans 
cells are believed to be targets for HIV-1 infection. The main target is CD4 + T helper 
cell, a type of T cell; T-cells are an important part of the immune system because they 
help to facilitate the body’s response to many common but potentially fatal infections. 
By ways that are not yet completely understood, HIV’s life cycle directly or indirectly 
causes a reduction in the number of T-cells in the body, eventually resulting in an 
increased risk of infections. Over time there are not enough T-cells in the body. At 
this stage, a person is said to have Acquired Immuno Deficiency Syndrome or AIDS, 
and becomes susceptible to infectious that a healthy immune system could deal with. 
The time in between the first infection and initiation of antibody synthesis is 6-12 
weeks. The medium time to receive an AIDS diagnosis among those infected with 
HIV is 7-10 years [1]. 
 We have strong evidences [3] that infectivity of HIV infected is not constant, 
rather it depends on the stage of infection and viral load. On the basis of most of the 
studies on this topic the transmission probability is highest at the early stage of 
infection .Considering the onset time of AIDS from HIV, Mukandavire et.al [4] took 
into account the time delay in incubation period and expressed incubation period as a 
function of time t. 
 Kaplan [5], Greenhalgh [6], Lewis and Greenhalgh [7] and Bobashev et al. [8] 
developed mathematical models of the spread of HIV by sharing of contaminated 
needles.  
 In the present work, we have worked in a larger perspective by constructing a 
mathematical model of the spread of HIV taking into account unsafe sex, transfusion 
of contaminated blood or blood products or sharing of contaminated needles and birth 
and death in the group not infected by HIV as well as in the group infected by HIV 
which is an advancement of the model proposed by Tapadar and Ghosh [9]. 
 In addition to this, here we concentrate on creating a practical profile by using the 
prior data to estimate the posterior results in the context of India. Rao [10] identified 
that there is a lack of scientific means of gathering information about the infectious 
period of HIV. Godbole and Mehendale [11] presented a vivid profile of spread of 



A Dynamical Model of the Spread of HIV/AIDS 63 
 

 

HIV/AIDS in India and about the preventive measures taken. Nagelkerke et al. [12] 
described a dynamic compartmental simulation model for HIV/AIDS epidemics in 
Botswana and India developed to identify the best strategies for preventing spread of 
HIV/AIDS. Chaturvedi [13] proposed a Neuro-Fuzzy approach to develop dynamic 
model of HIV population in Agra region in India. Though major risk groups have 
been identified but still the actual picture of the dynamics of HIV in India is not 
transparent. We have, in our hand, the details of the spread of HIV/AIDS in India for 
last few years [14, 15, 16 17, 18, 19, 20, 21]. This data is used carefully to forecast the 
total scenario of the present interest for the coming few years. 
 
 
Formulation of the Model 
To construct the model we assume the following: 
 I = Number of persons carrying HIV at time t 
 S = Number of persons not carrying HIV at time t 
 P1 = Mass of the population, initially not infected by HIV, going for unsafe sex 
 P2 = Mass of the HIV infected population going for unsafe sex 
 P3 = Mass, initially not infected but getting infected by HIV due to transfusion of 
contaminated blood or blood products or by sharing of contaminated needles 
 b = Birth rate per individual in the group not infected by HIV 
 d = Death rate per individual in the group not infected by HIV 
 b′ = Birth rate per individual in the group of HIV infected 
 d′ = Death rate per individual in the group of HIV infected. 
 
We consider the governing equations [9]  

  1 2 3
dS

P P P bS dS
dt

α β= − − + −  (1) 

  1 2 3
dI

P P P b I d I
dt

α β ′ ′= + + −  

 
where α,  β are the parameters characterizing the spread of HIV. 
Again we have, 
  P1 = Q1S 
  P2 = Q2I  (2) 
  P3 = Q3S 
 
where Q1, Q2 and Q3 are corresponding proportionality factors such that Qi ∈ (0, 1) 
for i=1,2,3. 
 Initially let there be ‘n’ individuals not infected by HIV and ‘a’ individuals 
infected by HIV, i.e., S (0) = n, I (0) = a. 
 So we get, 
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  1 2 3. . . ( )dS
Q S Q I Q S b d S

dt
α β= − − + −

 
and   (3) 

  1 2 3. . . ( )dI
Q S Q I Q S b d I

dt
α β ′ ′= + + −  

 
with  
  S (0) = n, I (0) = a 
 

or,  dS
pSI qS rS

dt
= − − +  

and   (4) 

  dI
pSI qS r I

dt
′= + +  

 
with  
  S (0) = n, I (0) = a 
 
where p = αQ1Q2, q = βQ3, r = b − d and r′ = b′ − d′. 
 
 
Search for Equilibrium Points 
For equilibrium point, we must have 
 

  0    and    0dS dI

dt dt
= =  

 
 i.e., − pSI − qS + rS = 0  (5) 
  psI + qS + r′I = 0 
 
 Solving this system, we get the points of equilibrium as (0, 0) and

( ) ,    r q r r q

pr p

′⎡ ⎤− −
⎢ ⎥
⎣ ⎦

. The second equilibrium point exists only if r > q and r′ < 0 to 

maintain the non-negative identity of both S and I.  
 
 
Analysis of Stability of Equilibrium Points 
An equilibrium point is considered to be stable if the system always returns to it after 
small disturbances. If the system moves away from the equilibrium after small 
disturbances, then the equilibrium is unstable. The number of eigen values is equal to 
the number of state variables. In our case, there will be two eigen values. If both the 
eigen values are real, then the equilibrium point is said to be a node and if they are 
conjugate complex numbers, then it is said to be a focus. If both the eigen values are 
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positive, then the equilibrium point is an unstable node; if both the eigen values are 
negative, then it is a stable node and if one is positive and the other is negative, then it 
is a saddle point. For complex eigen values if the real part is positive, then the 
equilibrium point is an unstable focus and if the real part is negative, then it is a stable 
focus.  
 
 For the present system, we have the characteristic equation as 

   0
pI q r pS

pI q pS r

λ
λ

− − + − −
=

′+ + −
 

 
 For the equilibrium point (0, 0), we have 

  
0

= 0
q r

q r

λ
λ

− + −
′ −

 

 
which gives, λ = r′, r−q. If r > q, r′ > 0 then both the eigen values are positive. In this 
case, the equilibrium point (0, 0) is an unstable node. If r > q, r′ < 0, then it is a saddle 
point. If r < q, r′ > 0 then it is again a saddle point. If r < q, r′ < 0, then it is a stable 
node. 

 In the domain r > q, r′ < 0 for the equilibrium point ( ) ,    r q r r q

pr p

′⎡ ⎤− −
⎢ ⎥
⎣ ⎦

 we have 

the characteristic equation as  

  

( )

 = 0

r q r

r
r q

r
r

λ

λ

′− −
−

′
−

 

 
which gives 

  

2 2

2 4 ( )

2

r q r q
r r q

r rλ

′ ′
′± + −

=  

 

 If the discriminant 
2 2

2 4 ( ) 0r q
r r q

r

′
′+ − ≥  both the eigen values are negative and in 

that case, it represents a stable node. Again if the discriminant 
2 2

2 4 ( )r q
r r q

r

′
′+ −  < 0 

then the equilibrium point represents a stable focus. 
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We have framed the series solution of (4) by the following way: 

S = n + (− pna − qn + rn) t + 
1
2

[(q − r)2 n + 2pqan − pr′an − 2aprn + a2p2n 

− ap2n2 − pqn2] t2 + …  (6) 
and  

I = a + (pna + qn + r′a) t + 
1
2

[aprn + qrn + 2pr′an + qr′n + r′2a − q2n 

− 2pqn − a2p2n + ap2n2 + pqn2] t2 + … 
 
Mutual Co-existence of the HIV not-infected and HIV infected individuals: 
From (4), we get  

  dI pSI qS r I

dS pSI qS rS

′+ +
=

− − +  
 (7) 

 
 Here we restrict ourselves in the domain r > q, r′ < 0. In most of the cases, it is 
expected that the birth rate per individual is less than the death rate per individual in 
the group of HIV infected people. So it looks good to assume r′ < 0. Also the net rate 
of increase (rate of birth - rate of death) per individual in the group not infected by 
HIV is expected to be greater than the rate per individual of getting infected by HIV 
due to transfusion of contaminated blood or blood products or by sharing of 
contaminated needles in the same group. So, r > q looks consistent in most of the 
cases.  
 

Case A: 0dI

dS
>  

 

Subcase (i): 0  and  0dI dS

dt dt
> >  i.e., pSI + qS + r′I > 0 and −pSI − qS + rS > 0. In 

this case, we have r q
I

p

−
< . We consider r q

I h
p

−
= −  for h > 0. From the 

inequality pSI + qS + r′I > 0 ,we have 

  1 ( )
( )

r r q
S r h

r ph p

′⎡ ⎤−′> −⎢ ⎥− ⎣ ⎦
 

 

provided r
h

p
< . But as I > 0, r q r

f
p p

−
< < , So the above range for S is a consistent 

range for S in this case. 

 We take 1 ( )( ) r r q
f h r h

r ph p

′⎡ ⎤−′= −⎢ ⎥− ⎣ ⎦
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 Therefore, 2( ) 0
( )

r q
f h

r ph

′
′ = <

−
 since r′ < 0 

 
 So, f (h) is a decreasing function of h. Hence f (h) < f (0) for h > 0, i.e., 
 

  1 ( ) ( )  r r q r q r
r h

r ph p pr

′ ′⎡ ⎤− −′ − <⎢ ⎥− ⎣ ⎦
 

 
 Hence in this case, we fail to get any specific range for S. 
 

Subcase (ii): 0  and  0dI dS

dt dt
< < , i.e., pSI + qS + r′I < 0 and − pSI − qS + rS < 0. In 

this case, we have r q
I

p

−
> . We consider r q

I h
p

−
= +  for h > 0. From the 

inequality pSI + qS + r′I < 0, we have 
 

  1 ( )
( )

r q r
S r h

r ph p

′⎡ ⎤− ′< −⎢ ⎥+ ⎣ ⎦
 

 

 We take  1 ( )( )
( )

r q r
g h r h

r ph p

′⎡ ⎤− ′= −⎢ ⎥+ ⎣ ⎦
 

 

 Therefore, 2( ) 0
( )

r q
g h

r ph

′
′ = − >

+
 since r′ < 0. 

 
 So, g (h) is an increasing function of h. Hence g(h) > g(0) for h > 0, i.e., 

  

1 ( ) ( )
( )

r q r r q r
r h

r ph p pr

′ ′⎡ ⎤− −′− >⎢ ⎥+ ⎣ ⎦
 

 
 Hence in this case also we fail to get any specific range for S. 
 

Case B: 0dI

dS
<  

 

Subcase (i): 0  and  0dI dS

dt dt
< > , i.e., pSI + qS + r′I < 0 and −pSI − qS + rS > 0. In 

this case, we have r q
I

p

−
<  and we take r q

I h
p

−
= −  where h > 0. From the 

inequality pSI + qS + r′I < 0, we get 
 



68  Anulekha Tapadar et al 
 

 

  1 ( )
( )

r r q
S r h

r ph p

′⎡ ⎤−′< −⎢ ⎥− ⎣ ⎦
 

 

provided r
h

p
< . But as I > 0, r q r

h
p p

−
< < . So the above range for S is a consistent 

range for S in this case. By previous argument in Case A : subcase (i) ,we have 
 

  1 ( ) ( )
( )

r r q r q r
r h

r ph p pr

′ ′⎡ ⎤− −′ − <⎢ ⎥− ⎣ ⎦
 

 

 Hence, ( )r q r
S

pr

′ −
<  

 

Subcase (ii): 0  and  0dI dS

dt dt
> < , i.e., pSI + qS + r′I > 0 and −pSI − qS + rS < 0. In 

this case, r q
I

p

−
>  and we take r q

I h
p

−
= +  where h > 0. From the inequality 

pSI+qS+r′I > 0, we get  

  1 ( )
( )

r q r
S r h

r ph p

′⎡ ⎤− ′> −⎢ ⎥+ ⎣ ⎦
. 

 
 Now by previous argument in case A : subcase (ii), we have 

  1 ( ) ( )
( )

r q r r q r
r h

r ph p pr

′ ′⎡ ⎤− −′− >⎢ ⎥+ ⎣ ⎦
 

 

 Hence, ( )r q r
S

pr

′ −
> . 
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Keeping in view all the above facts we can have the following table : 
 
Sign of 
dI/dS 

Serial 
No. 

Sign of 
dS/dt 

Sign of 
dI/dt 

Range of S Range of 
I 

 
 
+ 

1 + + No specific range for 
S 

r q
I

p

−
<  

2 − − No specific range for 
S 

r q
I

p

−
>  

 
 
− 

3 + − ( )r q r
S

pr

′ −
<  r q

I
p

−
<  

4 − + ( )r q r
S

pr

′ −
>  r q

I
p

−
>  

 
 
 Situation 3 is analogous to the model where the group not infected by HIV 
increases its number, and the group infected by HIV decreases its number. On the 
other hand, situation 4 is very alarming where the group not infected by HIV reduces 
its number as well as the group infected by HIV expands with time. This situation can 
be termed as critically epidemic situation. 
 
 
Results 
Estimation of parameters in the context of India 
We work to find out the best fitted values of the parameters p, q, r and rԢ present in 
the model in the context of India. For this, we have taken into account the existing 
statistical database at Indian context [14, 15, 16, 17, 18, 19, 20, 21]. Previously it was 
thought that around 5.7 million people were living with HIV in India in the year 2007 
- more than in any other country. Better data including the results of a national 
household survey led to a major revision of the prevalence estimate in July 2007 [17, 
18]. It was estimated then that around 2.3 million people in India were living with 
HIV. This entire process leaves some controversies. The problem arises when sentinel 
surveillance data is used to estimate a country’s HIV burden. Sentinel surveillance is 
not designed to make estimates, but it has been used to provide rough estimates of the 
HIV burden for many years, for want of a better approach. There are various biases in 
the existing sampling process. However these biases are not publicly acknowledged, 
as a result of which the public is misled. In reality, all sentinel sites are in government 
hospitals, whereas the majority of the people go to private hospitals. Again the 
samples are from pregnant women and groups with high risk. So no information is 
available for other men and women outside these groups. Finally if the condition is 
unevenly distributed in the population, any sample collected from it cannot represent 
the entire population. So the latest calculation may give us a better profile of the 
problem, but they too have their limitations [19]. 
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 So in the present work for calculations, we have taken into account both these 
databases and furnished two different sets of values of the parameters involved in our 
model as well as two different sets of graphical profiles. 
 
Using first set of data: 
We have the following table in this connection [14, 15, 16]: 
 

Year Indian Population 
(in millions) 

HIV/AIDS population In India 
(In millions) 

2005 1095 2.5 
2006 1121.8 3.97 
2007 1143 5.7 

 
 
 The calculation gives rise to the following best-fitted magnitudes of the 
parameters: 
   p = 101075.8 −× , q = 4.4731 410 −× , r = 0.0446 and r' = ─0.6688. 
 
 These estimated values can be further used effectively to predict the number of 
HIV/AIDS infected in the context of India at near future instants.  
 
Using second set of data which Government of India accepts now-a-days: 
We have the following table in this regard [19, 20, 21]  
 

Year Indian Population 
(in millions) 

HIV/AIDS population In India 
(In millions) 

2006 1121.8 2 
2007 1143 2.3 
2008 1148 2.5 

 
 
 The calculation gives rise to the following best-fitted magnitudes of the 
parameters: 
   p = 10103367.2 −× , q = 1.037 310 −× , r = 0.01736 and r' = ─0.6842. 
 
 We have used these estimated values to predict probable HIV/AIDS population in 
India in coming future. 
 
Our Forecast for HIV/AIDS Population in India 
Using the first set of estimated values of parameters we have estimated the number of 
HIV infected and uninfected individuals in India upto 2015 (2007 onwards) and in 
this context we present Figure 1 and Figure 2. 
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Figure 1 (Total number of uninfected versus time using first set of data) 
 

 
 

Figure 2 (Total number of infected versus time using first set of data) 
 
 

Using the second set of estimated values of the parameters we find the probable 
values of S and I up to 2015 (2008 onwards) and plotting those values graphically 
here we present Figure 3 and Figure 4. 
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Figure 3 (Total number of uninfected versus time using second set of data) 
 

 
 

Figure 4 (Total number of infected versus time using second set of data) 
 
 
 It is notable that although the years 2009 and 2010 were already past but still we 
keep them in the estimation period. This is due to the fact that the corresponding 
factsheets for these two years are still unavailable. The parameters involved here are 
very delicate in nature. If we go for a long run, the values of r and r′ must be changed 
significantly. So here we have considered a comparatively small time range (up to the 
year 2015) where it is very much expected that the magnitudes for these should have a 
very small amount of variation so that the result is not affected altogether. 
 
 
Discussion 
In the present work, we have proposed a mathematical model of the spread of HIV 
and estimated the parameters involved in that model in the context of India in order to 
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make the forecasting of number of infected people in India possible. These parameters 
can also be estimated for any other domain in the world using the corresponding data 
for that particular domain. Using the estimated parameters, one may predict what will 
be the total number of infected individuals by HIV/AIDS at near future for any 
geographical domain. The present statistical analysis has limitation that it cannot be 
used for a very large scale of future time because, in the process, values of r and r′ 
will certainly be changed and that will disturb the entire process. To overcome this 
problem, we have to introduce additional equations in the model which sufficiently 
depicts the time-variation of these two parameters. Concentrating on this fact, further 
research can be carried to have the forecasting for a sufficiently large scale of time. 
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