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Abstract

Two dimensional flow in rena tubules is studied by considering radial
component of velocity as a linear function of z by stream function approach.
We have shown that the volume rate of flow is a quadratic function of z. We
also calculated the tube radius required for minimum radial velocity. We have
also calculated the range for pressure drop for uniform reabsorption rate.
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Introduction
The functional unit of the kidney is called the Nephron or Renal tubule, each kidney
as about 1 million of these tubules. One major part of a nephron is the glomerular tuft
trough which blood coming from the renal artery and afferent arterioles is filtered.
The glomelecular filtrate is essential identical to plasma and no chemical separation
occurs up to this point. If the kidney delivers this filtrate for excretion, the body loses
many valuable materials, including water, at a rate faster than the one at which they
can be supplied by feeding. Thus 80 percent of filtrate is reabsorbed in the proximal
tubule, and of the remaining about 95 percent is further reabsorbed by the end of the
collection of the collecting duct. This reabsorb ion creates a radial component of the
velocity in the cylindrical tubule, which must be considered along with the axial
component of the velocity.

Due to loss of fluid from the walls, both the radial and axial velocities decreases
with z. Mathematicaly, we have to solve problem of flow of a viscous fluid in a
circular cylinder when there are axial and radial components of velocity and the radial
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velocity at all points on the surface of the cylinder is prescribed and is a decreasing
function ¢(z) of z.
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Figure 1: Two-dimensional flow in renal tubule.

During last decades an extensive research work has been done on the fluid
dynamics of biological fluids in presence and absence of magnetic fluid due to
bioengineering and medical applications [1-3]. Mathematical models of the rena
tubule are classified as epithelial, tubular or multitubular. The tubular models allow
prediction of the effect of epithelial transport to modify the lumina solution and
conversely the effect of altered luminal composition on transepithelia fluxes. Here
the conservation equation constitute asset of ODE with initia data that must be
integrated along tubule length. The mulitubular models are mathematically the most
complex and have character of BVP, where transport along an entire tubule
contributes to the interstitial composition. Frank [4] have analyzed the model in which
a force of unspecified origin drives the fluid from descending thin limb (DTL) to
interstitial vascular space, thus concentrating the solution in DTL Layton [5] have
solved hyperbolic partial differential equations of Renal model explicitly for both
dynamic and steady state. Layton. et. al. [6] have done Numerical Simulation of
propagating concentration profiles in renal tubules. Layton. et. a. [7] gave a dynamic
numerical method for models of the urine concentrating mechanism Pitman [8] have
studied mass conservation in a dynamic numerical method for a model of the urine
concentrating mechanism. Sands. et. a. [9] explained in detall urine concentrating
mechanism and its regulation in their book. Marcano. et. a [10] gave an inverse
algorithm for a mathematical model of an avian urine concentrating mechanism. Anita
et. a. [11] have studied the dynamics of coupled nephrons. Thus many researchers
have studied the mathematical model of renal fluid flows.

In this paper we study renal fluid flow by using linear model neglecting the
inertial term and considering fluid as nonviscous in cylindrical polar coordinate
system.
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Basic Equations and Boundary Conditions
At the outset, we may note that the equation of motion can be simplified since the
inertial term in relation to the viscous terms can be neglected. The average tubular

radius is about 10~°cm, the average velocity is about 10™*cm/ sec, and fluid velocity
about 7x10~*dynessec/ cm?. This gives a Reynolds number of about 10~ and, since

this is very much less than 1, we neglect the inertial terms to get the following
equations of continuity and motion.
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The boundary conditions are
v, =0,v, =0, v, = finite, a r=0. 4)
0z
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p=p, az=0 }
P=DP.. (6)

Partially differentiating equations (2) and (3) with respect to z & r respectively
and eliminating p we get
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Partially differentiating equation (7) with respect to z and using equation (1), we

get
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Introducing the stream function we can satisfy the equation (1) defined by
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Substituting (9) in (7), we get
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D?(D%)=0, (10)

where D? is defined by

0> 10 o°
D’=(=-~-—+—> 11
or> ror 0z° (1)
I v, = f(r)g(2), (12)
then the form of (8) suggests that an analytical solution may be possible.
If g(z)= A, + Az (13)

From equation (5) since v, = ¢(z) when r=R, we get
f(r)a(z)=4(2). (14)

This suggest that we may get an analytical solution when the radial component of
velocity on the surface of the cylinder is given by

$(z)=a, +a,z. (15)

Radial Velocity at wall Decr eases linearly with z
For (10), let the solution be

w(r,z)=F(rfayz+4a,2% )+ G(r) (16)
So that using (9), we get
v, = LF(r)ay + 2,2) 17)
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From equation (10) we get
d?> 1d.,, 5 d?> 1d.,,
g 2852 1 4 249
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d> 1d
+2a,(_ 5~ JF(r)=0
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From above equation we get
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Equation (20) gives
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Where
d> 1d
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Solving (24) we get
1d°F dF
— ——=
rodr? dr
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Solving above differential equation we get

Ar* Br?
+

F(r)=C+Dr?+ Inr

From equation (22) we get
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Solving equation (27) we get
d> 1d
(?—FE)G(F%- 2a1F(r): |\/|I’2 + N
Now from boundary conditions (4) and (5) we have
i[l F'(r)]=0 ar=0
drr

i[EG'(r)] =0ar=0
drr
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1
r
F'(N=0 G'(r)=0 F(R) =R (33)

F'(r)=0 and FlG'(r):O arefiniteatr=0 (32

From (26), (31) and (32) we get
C=0, B=0 (34)

From (26), (32) and (34) we get
2DR+1AR’=0, DR*+1AR* =R, (35)

Solving above equation we get

Equation (26) becomes

r r
F(r)=R2(=)-(=)* 37
(r)=R2Q)" - ()] (37)

Substituting (37) in (28), we get
d°G 1dG ) r? re
== =Mr?+N-4a,—+2a, — 38
dr® r dr i aiRjLalR3 (38)

Integrating (38), we obtain
Mr* Nr? art ar

G(r)=N, +M,r*+ += lnr—EE+EF (39)
From (32) and (39)

N=0 (40)
From (33) and (39)

2M, R+ M§3 —3% R*=0 (41)

Equation (41) can determine only one of the two unknown constants M and M, to
determine both of these, we need one more relation. This relation can be found in
terms of Q, whichisthetota flux at z=0.

Using

Q(z)= fzﬂrvz (r,z)dr (42)
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R 3
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From (39), (40), (45) and (46) we get
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The constant N, need not be determined since w(r,z) can aways contain an

arbitrary constant without affecting the velocity components.
From (17), (37) and (47) we get

I rs
v (r2)=[22 - ()1 +a2) (48)
w2 = - 2@z taz) - 2R E- D) (49)

Differentiating equation (43) we get

Z—Q =8r(a,z+1az )J’(———)dr =-27R(a, + 3,2) (50)

Thus the decrease of flux is equal to the amount of the fluid coming out of the
cylinder per unit length per unit time.
Integrating equation (50) we get

Q(2) =Q, - 7R(2a,z+ a,z%) (51)
From equation (49) and (51) we get
_ 2Q(2) alR . i
v, =1~ Rz )[ e, )] (52)

Using (2), (3), (48), (49) and (51), we get
op _  8ur
or  R®

(ap + a,2) (53)
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Integrating equation (53) we get
aiﬂf

p(r,z) =-— (a, +a,2) + k(2
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(54)

(55)

Differentiating (55) partially with respect to z and using (54) we get

431/1[1 2Q(Z)]

k'(2) = —

Integrating above equation we get

()=~ 2137 2200

where

= iQ(z)dz

(56)

(57)

The average pressure p(z) at any section is given by

j p(r,z)2zrdr

p(2) =
I 27rdr

2a0 (87(3F({z) 1Oa1)]

=—4

Thus the pressure drop over tube length L is
Ap=p(0)-p(L)
Using equation (59) we get

&) 108,

P(2)=u r=y

The Maximum and Minimum of Radial Velocity

(58)

(59)

(60)

We have a condition that the Maximum and Minimum of an equation is given by
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If f'(c)=0and f"(c)<O
Then f(x) hasamaximum at x=c
If f'(c)=0and f"(c)>0
Then f(x) hasaminimum at x=c

Differentiating equation (48) with respect to r we get

dv, .2 3r?
ar RTR ot ED

From the condition (61) equation (62) becomes

2 3r?
= - =0
[ R R® ]
From equation (63) we get

r_:i\ﬁ
R 3

Differentiate again equation (62) we get

dv, 6r
T AN
2
Clearly d \gr <0 when - = 2
dr R V3
Then Maximum Radial velocity exists at LR: %

Then Maximum Radial Velocity is given by
(V) me =[2J3 - (2)1(3 +22)
(Ve = 442 (80 +22)

Then from equation (65) it is clear that

2
d \2, >0 when = =— E
dr R 3
Then the Minimum radial velocity exists at LR:— %
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(61)

(62)

(63)

(64)

(65)

(66)
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(V) in = [2(—+/2) = (/2] (8 + 2,2)
(Vr)min = _%\/%(ao + alz)

The Maximum and Minimum of Axial Velocity
Differentiating equation (49) we get

dv r?
o= R (28, + 22,2)
From the condition (61), equation (68) gives

2a,+2a,z=0

%

z=-2

a

And differentiating equation (68) with respect to z we get

d?v, _ r’
dz’ “wlx

R

We get the four conditions for the Maximum and Minimum

2
Casel: If a, >0, and (LRJ <1

2
Then d—22<0, clearly v, has Maximum at z--%
&

2
Case2: If g, >0, and (LR] >1

2
Then %>0, clearly v, has Minimum at 2=
z a

2
Case3: If a <0, and (LRJ <1
d’z a,

Then — >0, clearly v, hasMinimumaat z=-—=2
dz a

2
Cased: If g, >0, and (LR] >1

(67)

(68)

(69)

(70)

(71)
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2
Then %<0, clearly v, has Maximum at z=—i
z &

The Pressure drop For Uniform Reabsorption rate over the Tube

Length L

The pressure drop over the tube length L is
—_8Q(L)  10a
Ap=u(———+—=)L 72
p=u( pr=w 3R) (72)

For the uniform reabsorption rate, the pressure drop over the tube length L is
given by

Ap=u 220 (73)
7R

Where

Q2)=[Q(2)dz
For the uniform reabsorption rate Q(z) is given by

Q(2) = Q, - 2a,7Rz (74)
Then Q(z) isgiven by

Q(z) = Q,z— a,7 Rz? (75)
From equation (73) we get

6(2) — QOZ_ [QO _ZQ(Z)] z

6(2) — [QO +2Q(Z)] z (76)
And

Q(0)=Q, At =0
From equation (73) we get

AD= 8u [QO+Q(L)] (77)

7R 2



58 L.N. Achala and K.R. Shreenivas

From equation (77) it is clear that
Ap> Q0O (78)

7R

From equation (74) at z=L
Q(2) =Q, —23,7RL (79)

From equation (77) and (79)

Ap= 8" = (80)
Clearly from Equation (80) we get
8ulL
Ap<—2 Q) (81)
From equation (78) and (81) we get
YA L <aps 2200 82

7R
The pressure drop for the uniform reabsorption if
R=10°cm, Q, ~ 4x10'cm’/sec,
1 =7x10dynesec/ cm?®, L =1cm, Q(L) = 0.2Q(0)

isgiven by

_ 81 [QO)+Q()] |
7R 2

Ap=
Substituting the given values we get

Ap= 134,08 dyne/ cm?
T

Discussion

In this paper we study two dimensional flows in rena tubules with linear model. We
consider radial component of velocity as a linear function of z. We calculate the
stream function and axia velocity. Using this we calculate volume rate of flow which
is a quadratic function of z. We also calculate average flux and pressure drop over the
tube length. Using the condition of maximum and minimum of a function, radial
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velocity will be minimum at LR= —\E and axial velocity depending on the constants

a, anda, . For uniform reabsorption rate we calculate the pressure drop and flux of the
flow, which is given by the relation (82).
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