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Abstract 
 

Two dimensional flow in renal tubules is studied by considering radial 
component of velocity as a linear function of z by stream function approach. 
We have shown that the volume rate of flow is a quadratic function of z. We 
also calculated the tube radius required for minimum radial velocity. We have 
also calculated the range for pressure drop for uniform reabsorption rate.  
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Introduction 
The functional unit of the kidney is called the Nephron or Renal tubule, each kidney 
as about 1 million of these tubules. One major part of a nephron is the glomerular tuft 
trough which blood coming from the renal artery and afferent arterioles is filtered. 
The glomelecular filtrate is essential identical to plasma and no chemical separation 
occurs up to this point. If the kidney delivers this filtrate for excretion, the body loses 
many valuable materials, including water, at a rate faster than the one at which they 
can be supplied by feeding. Thus 80 percent of filtrate is reabsorbed in the proximal 
tubule, and of the remaining about 95 percent is further reabsorbed by the end of the 
collection of the collecting duct. This reabsorb ion creates a radial component of the 
velocity in the cylindrical tubule, which must be considered along with the axial 
component of the velocity. 
 Due to loss of fluid from the walls, both the radial and axial velocities decreases 
with z. Mathematically, we have to solve problem of flow of a viscous fluid in a 
circular cylinder when there are axial and radial components of velocity and the radial 
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velocity at all points on the surface of the cylinder is prescribed and is a decreasing 
function )(zφ  of z. 

 

 
 

Figure 1: Two-dimensional flow in renal tubule. 
 
 
 During last decades an extensive research work has been done on the fluid 
dynamics of biological fluids in presence and absence of magnetic fluid due to 
bioengineering and medical applications [1-3]. Mathematical models of the renal 
tubule are classified as epithelial, tubular or multitubular. The tubular models allow 
prediction of the effect of epithelial transport to modify the luminal solution and 
conversely the effect of altered luminal composition on transepithelial fluxes. Here 
the conservation equation constitute asset of ODE with initial data that must be 
integrated along tubule length. The mulitubular models are mathematically the most 
complex and have character of BVP, where transport along an entire tubule 
contributes to the interstitial composition. Frank [4] have analyzed the model in which 
a force of unspecified origin drives the fluid from descending thin limb (DTL) to 
interstitial vascular space, thus concentrating the solution in DTL Layton [5] have 
solved hyperbolic partial differential equations of Renal model explicitly for both 
dynamic and steady state. Layton. et. al. [6] have done Numerical Simulation of 
propagating concentration profiles in renal tubules. Layton. et. al. [7] gave a dynamic 
numerical method for models of the urine concentrating mechanism Pitman [8] have 
studied mass conservation in a dynamic numerical method for a model of the urine 
concentrating mechanism. Sands. et. al. [9] explained in detail urine concentrating 
mechanism and its regulation in their book. Marcano. et. al [10] gave an inverse 
algorithm for a mathematical model of an avian urine concentrating mechanism. Anita 
et. al. [11] have studied the dynamics of coupled nephrons. Thus many researchers 
have studied the mathematical model of renal fluid flows.  
 In this paper we study renal fluid flow by using linear model neglecting the 
inertial term and considering fluid as nonviscous in cylindrical polar coordinate 
system. 
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Basic Equations and Boundary Conditions 
At the outset, we may note that the equation of motion can be simplified since the 
inertial term in relation to the viscous terms can be neglected. The average tubular 
radius is about ,10 3 cm−  the average velocity is about sec,/10 1cm−  and fluid velocity 
about 23 sec/107 cmdynes−× . This gives a Reynolds number of about 310−  and, since 
this is very much less than 1, we neglect the inertial terms to get the following 
equations of continuity and motion. 
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 The boundary conditions are   
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 Partially differentiating equations (2) and (3) with respect to z & r respectively 
and eliminating p we get 
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 Partially differentiating equation (7) with respect to z and using equation (1), we 
get 
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 Introducing the stream function we can satisfy the equation (1) defined by  
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 Substituting (9) in (7), we get  
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where 2D  is defined by  

  )1( 2

2

2

2
2

zrrr
D

∂
∂

+
∂
∂

−
∂
∂

= .  (11) 
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then the form of (8) suggests that an analytical solution may be possible.  

 If  ( ) zAAzg 10 +=   (13) 
 
 From equation (5) since ( )zvr φ=  when r=R, we get 

  ( ) ( ) ( )zzgrf φ= .   (14)  
 
 This suggest that we may get an analytical solution when the radial component of 
velocity on the surface of the cylinder is given by 

   ( ) zaaz 10 +=φ .   (15) 
 
Radial Velocity at wall Decreases linearly with z 
For (10), let the solution be 
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 From equation (10) we get 
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 From above equation we get 
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 Equation (20) gives  
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 Solving above differential equation we get 
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 Solving equation (27) we get  
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 Now from boundary conditions (4) and (5) we have  
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 From (26), (31) and (32) we get 
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 From (26), (32) and (34) we get 
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 Integrating (38), we obtain 
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 From (32) and (39) 
  N=0  (40) 
 
 From (33) and (39) 
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 Equation (41) can determine only one of the two unknown constants M and 1M , to 
determine both of these, we need one more relation. This relation can be found in 
terms of 0Q  which is the total flux at z=0. 
 Using 
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 From (39), (40), (45) and (46) we get 
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 The constant 1N  need not be determined since ( )zr,ψ  can always contain an 
arbitrary constant without affecting the velocity components. 
 From (17), (37) and (47) we get 
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 Differentiating equation (43) we get 
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 Thus the decrease of flux is equal to the amount of the fluid coming out of the 
cylinder per unit length per unit time. 
 Integrating equation (50) we get 
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 Using (2), (3), (48), (49) and (51), we get 
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 Integrating equation (53) we get 
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 Differentiating (55) partially with respect to z and using (54) we get  
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 The average pressure p(z) at any section is given by 
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 Thus the pressure drop over tube length L is 
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 Using equation (59) we get 
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The Maximum and Minimum of Radial Velocity 
We have a condition that the Maximum and Minimum of an equation is given by 
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  If '( ) 0f c =  and ''( ) 0f c <  
 Then ( )f x  has a maximum at x=c   (61) 
 If '( ) 0f c =  and ''( ) 0f c >  
 Then ( )f x  has a minimum at x=c  
 
 Differentiating equation (48) with respect to r we get  
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The Maximum and Minimum of Axial Velocity 
Differentiating equation (49) we get  
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The Pressure drop For Uniform Reabsorption rate over the Tube 
Length L 
The pressure drop over the tube length L is  
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 For the uniform reabsorption rate, the pressure drop over the tube length L is 
given by 
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 From equation (77) it is clear that 
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 The pressure drop for the uniform reabsorption if 

  310R cm−= , 7 3
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Discussion 
In this paper we study two dimensional flows in renal tubules with linear model. We 
consider radial component of velocity as a linear function of z. We calculate the 
stream function and axial velocity. Using this we calculate volume rate of flow which 
is a quadratic function of z. We also calculate average flux and pressure drop over the 
tube length. Using the condition of maximum and minimum of a function, radial 
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velocity will be minimum at 2
3

r

R
= −  and axial velocity depending on the constants 

0a  and 1a . For uniform reabsorption rate we calculate the pressure drop and flux of the 
flow, which is given by the relation (82).  
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